Correctness is the minimum requirement of software, the essential purpose of testing. Correctness testing will need some type of oracle, to tell the right behavior from the wrong one. The tester may or may not know the inside details of the software module under test, e.g. control flow, data flow, etc. Therefore, either a white-box point of view or black-box point of view can be taken in testing software. We must note that the black-box and white-box ideas are not limited in correctness testing only.
Black-Box Testing:
The black-box approach is a testing method in which test data are derived from the specified functional requirements without regard to the final program structure. It is also termed data-driven, input/output driven, or requirements-based testing. Because only the functionality of the software module is of concern, black-box testing also mainly refers to functional testing -- a testing method emphasized on executing the functions and examination of their input and output data. The tester treats the software under test as a black box -- only the inputs, outputs and specification are visible, and the functionality is determined by observing the outputs to corresponding inputs. In testing, various inputs are exercised and the outputs are compared against specification to validate the correctness. All test cases are derived from the specification. No implementation details of the code are considered.
It is obvious that the more we have covered in the input space, the more problems we will find and therefore we will be more confident about the quality of the software. Ideally we would be tempted to exhaustively test the input space. But as stated above, exhaustively testing the combinations of valid inputs will be impossible for most of the programs, let alone considering invalid inputs, timing, sequence, and resource variables. Combinatorial explosion is the major roadblock in functional testing.
To make things worse, we can never be sure whether the specification is either correct or complete. Due to limitations of the language used in the specifications (usually natural language), ambiguity is often inevitable. Even if we use some type of formal or restricted language, we may still fail to write down all the possible cases in the specification. Sometimes, the specification itself becomes an intractable problem: it is not possible to specify precisely every situation that can be encountered using limited words. And people can seldom specify clearly what they want -- they usually can tell whether a prototype is, or is not, what they want after they have been finished. Specification problems contributes approximately 30 percent of all bugs in software.
The research in black-box testing mainly focuses on how to maximize the effectiveness of testing with minimum cost, usually the number of test cases. It is not possible to exhaust the input space, but it is possible to exhaustively test a subset of the input space. Partitioning is one of the common techniques. If we have partitioned the input space and assume all the input values in a partition is equivalent, then we only need to test one representative value in each partition to sufficiently cover the whole input space. Domain testing partitions the input domain into regions, and consider the input values in each domain an equivalent class. Domains can be exhaustively tested and covered by selecting a representative value(s) in each domain. Boundary values are of special interest. Experience shows that test cases that explore boundary conditions have a higher payoff than test cases that do not. Boundary value analysis requires one or more boundary values selected as representative test cases. The difficulties with domain testing are that incorrect domain definitions in the specification can not be efficiently discovered.
Good partitioning requires knowledge of the software structure. A good testing plan will not only contain black-box testing, but also white-box approaches, and combinations of the two.
White-Box Testing:
Contrary to black-box testing, software is viewed as a white-box, or glass-box in white-box testing, as the structure and flow of the software under test are visible to the tester. Testing plans are made according to the details of the software implementation, such as programming language, logic, and styles. Test cases are derived from the program structure. White-box testing is also called glass-box testing, logic-driven testing or design-based testing.
There are many techniques available in white-box testing, because the problem of intractability is eased by specific knowledge and attention on the structure of the software under test. The intention of exhausting some aspect of the software is still strong in white-box testing, and some degree of exhaustion can be achieved, such as executing each line of code at least once (statement coverage), traverse every branch statements (branch coverage), or cover all the possible combinations of true and false condition predicates (Multiple condition coverage).
Control-flow testing, loop testing, and data-flow testing, all maps the corresponding flow structure of the software into a directed graph. Test cases are carefully selected based on the criterion that all the nodes or paths are covered or traversed at least once. By doing so we may discover unnecessary "dead" code -- code that is of no use, or never get executed at all, which can not be discovered by functional testing.
In mutation testing, the original program code is perturbed and many mutated programs are created, each contains one fault. Each faulty version of the program is called a mutant. Test data are selected based on the effectiveness of failing the mutants. The more mutants a test case can kill, the better the test case is considered. The problem with mutation testing is that it is too computationally expensive to use. The boundary between black-box approach and white-box approach is not clear-cut. Many testing strategies mentioned above, may not be safely classified into black-box testing or white-box testing. It is also true for transaction-flow testing, syntax testing, finite-state testing, and many other testing strategies not discussed in this text. One reason is that all the above techniques will need some knowledge of the specification of the software under test. Another reason is that the idea of specification itself is broad -- it may contain any requirement including the structure, programming language, and programming style as part of the specification content.
We may be reluctant to consider random testing as a testing technique. The test case selection is simple and straightforward: they are randomly chosen. Study in indicates that random testing is more cost effective for many programs. Some very subtle errors can be discovered with low cost. And it is also not inferior in coverage than other carefully designed testing techniques. One can also obtain reliability estimate using random testing results based on operational profiles. Effectively combining random testing with other testing techniques may yield more powerful and cost-effective testing strategies.